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Recall that in the last two lectures, we saw the construction of quantum Tanner codes [LZ22],
computed some of their parameters, and proved that they are a CSS code. In this lecture,
we continue our study of quantum Tanner codes, and in particular, we will compute their
distance.

Let us first recall what we know about quantum Tanner codes.

1 Quantum Tanner code review

1.1 Left-right Cayley complex

Let G be a group and A,B be two sets of generators each of size ∆ that are closed under
inverse. We defined the left-right Cayley complex to be a graph on 4 copies of the set of
elements of G. In particular, let Vij = G × {ij} for i, j ∈ {0, 1}. The left-right Cayley
complex has vertex set V00 ∪ V01 ∪ V10 ∪ V11 and it has 4 kinds of edges, labeled as A- or
B-edges.

• A-edge between (g, 00) and (ag, 10) for all a ∈ A, g ∈ G.

• A-edge between (gb, 01) and (agb, 11) for all a ∈ A, g ∈ G.

• B-edge between (g, 00) and (gb, 01) for all b ∈ B, g ∈ G.

• B-edge between (ag, 10) and (agb, 11) for all b ∈ B, g ∈ G.

Notice how the vertices (g, 00), (ag, 10), (agb, 11), (gb, 01) and their connections are con-
nected in a square, for all values of a, g, b. We defined Q to be the set of such squares, and
the quantum Tanner code is defined on these squares.

For a vertex v ∈ V00, we define its Q-neighborhood to be the set of squares incident to v.
It is not hard to see that each square incident to v is parametrized by (a, b) in A×B. Thus
we can arrange the Q-neighborhood of v in a ∆×∆ square, where each row corresponds to
an element of A and each column corresponds to an element of B.

We define the Q-neighborhood for vertices in V01 ∪V11 ∪V10 in a similar way (but slightly
different for each set), such that we can arrange the Q-neighborhood squares in the convenient
way shown in Figure 1.
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Figure 1: A convenient way to represent the Q-neighborhoods of vertices. Each vertex
participates in ∆2 squares, one for each pair (a, b) ∈ A×B. These can be arranged in ∆×∆
squares. Moreover, if we arrange the squares as above, the vertices (g, 00) and (gb, 01) share
a column (the one that corresponds to b ∈ B for (g, 00)). Similarly for other vertices, any
two columns and rows with the same color are shared in the figure above.

1.2 X and Z codes

Armed with the left-right Cayley complex setup, we defined two codes on it:

• Code CA with parameters [∆, ρ∆], and

• Code CB with parameters [∆, (1− ρ)∆].

Last class, we showed that the resulting quantum Tanner code has constant rate as long as
ρ ̸= 1

2
. We will also see today that for our code to have good distance, we want the codes

CA, CB, C
⊥
A , C

⊥
B to have distance at least δ∆ for some positive constant δ.

Since the quantum Tanner code is a CSS code, it suffices to specify its X and Z codes
to describe it. For that, let us define the “square” graph G□

0 to be the bipartite graph with
vertex set V00 ∪ V11 that has an edge between (v, 00) and each vertex of V11 that is in its
Q-neighborhood, and vice versa. The bipartite graph G□

1 is defined similarly, over the vertices
of V01 ∪ V10.

• We denote the X code by Code0. It requires that for all v ∈ V00 ∪ V11,

Q(v) ∈ C⊥
A ⊗ FB

2 + FA
2 ⊗ C⊥

B .

Equivalently, this is the (classical) Tanner code Tan
(
G□
0 , C

⊥
A ⊗ FB

2 + FA
2 ⊗ C⊥

B

)
.

• We denote the Z code by Code1. It requires that for all v ∈ V01 ∪ V10

Q(v) ∈ CA ⊗ FB
2 + FA

2 ⊗ CB.

Equivalently, this is the (classical) Tanner code Tan
(
G□
1 , CA ⊗ FB

2 + FA
2 ⊗ CB

)
.
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1.3 More properties

Another desirable property for our sets A,B is that we want their left and right Cayley graphs
CayL(G,A),CayR(G,B) respectively to be Ramanujan. This implies that the resulting square
graphs G□

0 and G□
1 are almost Ramanujan, which means that1

λ(G□
0 ), λ(G□

1 ) ≤ 4∆.

We also saw that we want the two codes

CA ⊗ FB
2 + FA

2 ⊗ CB and C⊥
A ⊗ FB

2 + FA
2 ⊗ C⊥

B

to beK-product expanding [KP23] 2. This means that each codeword x ∈ CA⊗FB
2 +FA

2 ⊗CB

can be decomposed as x = c+ r, where the columns of c are codewords of CA, and the rows
of r are codewords of CB.

c =

[ ]| | |
| | |
| | |

∈ CA

, r =

[ ]− − −
− − − ∈ CB

− − −

This decomposition of x must satisfy that |x| = |c+ r| ≥ K∆(∥c∥+ ∥r∥). Here we use ∥·∥
to denote the norm of a codeword. In particular, ∥c∥ and ∥r∥ are equal to the number of
non-zero columns of c and non-zero rows of r respectively. One may be able to write some x
as a sum of c+ r in multiple ways, but we will be interested in the pair (c, r) that minimizes
the sum of the norms ∥c∥+ ∥r∥.

Definition 1.1 (Minimal representation of a codeword). The minimal representation of x
is the decomposition x = c+ r which minimizes ∥c∥+ ∥r∥.

2 Distance of Z Code

We will start by bounding the distance of the Z code, which turns out to be slightly easier
than the distance of the X code. Recall that the distance of the Z code is defined as follows

d+Z = min
x∈Code1\Code⊥0

|x|.

Let x ∈ Code1 \ Code⊥0 . Let xv be the restriction of the codeword x to the Q-neighborhood
of v. Then for all v ∈ V01 ∪ V10,

xv ∈ CA ⊗ FB
2 + FA

2 ⊗ CB.
1Recall that the square graphs are ∆2-regular, and thus the bound on their eigenvalue is only twice the

bound for a Ramanujan graph.
2Can you find a code that is not K-product expanding?
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2.1 Codewords of minimal norm

To bound the distance of the Z code we are interested in the minimum Hamming weight of
a codeword. In this section, we will study the norm of a codeword, a related quantity to the
Hamming weight.

Consider the following thought experiment: We will decompose the word xv into its
minimal representation xv = cv + rv and consider the sum of cv and rv’s for all v ∈ V01. In
particular, we will define

C0 =
∑
v∈V01

cv, R1 =
∑
v∈V01

rv.

Here C0, R1 are bit-strings of length Q and satisfy C0 +R1 = x.
We will repeat the above thought experiment for the vertices in V10. Formally, let

C1 =
∑
v∈V10

cv, R0 =
∑
v∈V10

rv.

Like before, C1 + R0 = x. Let us now extend the notion of a minimal representation to
codewords of the quantum Tanner code3.

Definition 2.1 (Representation and minimal representation). The tuple (C0, C1, R0, R1) is
a representation of x. It is minimal if its norm ∥C0∥ + ∥C1∥ + ∥R0∥ + ∥R1∥ is minimized,
where ∥Ci∥ is the number of non-zero columns, and ∥Ri∥ is the number of non-zero rows.

The two representations (C0, R1) and (C1, R0) may seem unrelated, except for the fact
that they both sum to x. We will now see another important relationship between these two
pairs of strings. We start from the fact that they have the same sum

C0 +R1 = C1 +R0,

and add R0 +R1 to both sides. Since we are working modulo 2, we get

C0 +R0 = C1 +R1.

We have concluded that the two sums above, which we defined in our thought experiment,
are equal, and somehow give us an alternative weird way of labeling the squares. Let their
sum be equal to x0 ∈ {0, 1}Q. We will see that this x0 does not lie in the codes we have so
far but rather lies in another, related code.

Recall the quantum Tanner code picture of Figure 2. We can see that x0 = C0 + R0,
when restricted to the Q-neighborhood of (g, 00) is in CA ⊗ FB

2 + FA
2 ⊗ CB. The same holds

for x0, when restricted to the Q-neighborhood of (agb, 11). Thus x0 lies in a different code
than Code0, and in particular x0 is a completely new string in Tan

(
G□
0 , CA ⊗ FB

2 + FA
2 ⊗ CB

)
.

3Definition 1.1 defined a minimal representation for a codeword restricted to a Q(v)-neighborhood. We
extend this definition to a codeword of the whole Tanner code.
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Figure 2: The quantum Tanner code.

To conclude the distance of the Z code, we will show that (C0, C1, R0, R1) is also a
minimal representation for x0.

For the sake of contradiction, assume that (C0, C1, R0, R1) is not minimal for some
v ∈ V00 ∪ V11. For simplicity, let’s assume that v ∈ V00. Then

(x0)v = (C0)v + (R0)v

= cv + rv.

Since it is not minimal, we can also write x0 = c′v + r′v for some c′v, r
′
v with fewer non-zero

rows and columns. Then instead,

(x0)v = c′v + r′v
= (cv + tv) + (rv + tv).

since for c′v, r
′
v to have the same sum, it must hold that we have added to both the same

value tv (modulo 2).

Observation 2.2. The value of tv must be a codeword of CA ⊗ CB.

Proof. We can write tv as c′v + cv. Since both c′v and cv have columns that are in CA, so are
the columns of tv. Similarly, tv = r′v + rv. Both r′v and rv have rows that are in CB, which
must also hold for tv. Thus tv ∈ CA ⊗ CB.

But recall that

tv ∈ CA ⊗ CB =
(
C⊥

A ⊗ FB
2 + FA

2 ⊗ C⊥
B

)⊥
= Code⊥0 .

Remark 2.3. It may be useful to remember here the toric code, where the elements of
CZ \ C⊥

X were cycles, and two cycles were equivalent up to adding plaquette boundaries,
which are in C⊥

X .
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Back to the quantum Tanner code, we will take our string C0 and replace it with C0 + tv,
and we will do the same with R0 with R0 + tv. Then indeed

∥C0 + tv∥+ ∥R0 + tv∥+ ∥C1∥+ ∥R1∥ < ∥C0∥+ ∥R0∥+ ∥C1∥+ ∥R1∥.

But now we have changed our x string, because

x =
C0 +R1 → C0 +R1 + tv
C1 +R0 → C1 +R0 + tv

= element of {x+ Code⊥0 } with reduced norm.

Since x ∈ Code1 \ Code⊥0 by construction, x+ tv also lies in the same set. We conclude the
following lemma.

Lemma 2.4. If x has a minimal norm in coset {x+ Code⊥0 } then a minimal representation
for x is equal to a minimal representation for x0.

2.2 From minimal norm to distance bound

In the previous section, we identified a minimal norm codeword in a coset. In this section,
we will use the K-product expanding property to transfer norm bounds to Hamming weight
bounds and compute the distance.

Our goal will be to show that the norm of each element in Code1 \ Code⊥0 is at least a
constant times the number of qubits n.

Claim 2.5. For any x ∈ Code1 \ Code⊥0 ∈ {0, 1}Q,

∥x∥ ≥ δ2K · n
512 ·∆2

.

We will prove this claim in the next lecture. For the remainder of this lecture, we
will demonstrate a lower bound on the distance of the Z code, assuming the statement
of Claim 2.5.

Theorem 2.6. The distance of the Z code satisfies

d+Z = min
x∈Code1\Code⊥0

|x| ≥ δ2K2

1024 ·∆
· n.

Proof. Let x be an element of the set Code1 \ Code⊥0 with minimal norm. Moreover, let
(C0, C1, R0, R1) be a minimal representation of x. Look at the decomposition x = C0 +R1 =∑

v∈V01
(cv + rv). It holds that

|x| =
∑
v∈V01

|cv + rv| ≥
∑
v∈V01

K ·∆ · (∥cv∥+ ∥rv∥) = K∆ · (∥C0∥+ ∥R1∥) . (1)

We can similarly decompose x = C1 +R0, so

|x| ≥ K∆ · (∥C1∥+ ∥R1∥) . (2)
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We deduce that |x| is at least the average of the two quantities from Equations (1) and (2)

|x| ≥ 1

2
K∆ · (∥C0∥+ ∥C1∥+ ∥R0∥+ ∥R1∥)

=
1

2
K∆ · ∥x∥

≥ δ2K2

1024 ·∆
· n.

Bounding the Hamming weight of x suffices since any other element of Code1 \ Code⊥0 will
have norm at least ∥x∥, and thus the same Hamming weight lower bound applies.

In conclusion, Claim 2.5 and Theorem 2.6 formalized our intuition that lower bounding
the norm of a codeword in Code1 \ Code⊥0 provides a lower bound for this Hamming weight,
which in turn allows us to bound the distance of the Z code.
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